VI Amazonian Symposium on Physics

Deformationally strong singularities in modified gravity

Renan B. Magalhães, **Gabriel Pacheco Ribeiro**, Haroldo C. D. Lima Júnior, Gonzalo J. Olmo, Luís C. B. Crispino

Summary

- A primer on singularities
- Modified gravity and Wormhole solution
- Singularity Strength
- Conclusions

$$ds^{2} = -\left(1 - \frac{2M}{r}\right)dt^{2} + \left(1 - \frac{2M}{r}\right)^{-1}dr^{2} + r^{2}d\Omega^{2}$$

$$ds^{2} = -\left(1 - \frac{2M}{r}\right)dt^{2} + \left(1 - \frac{2M}{r}\right)^{-1}dr^{2} + r^{2}d\Omega^{2}$$

$$R_{\mu\nu\rho\sigma}R^{\mu\nu\rho\sigma} = \frac{48M^2}{r^6}$$

It becomes unbounded as one approached the origin: Curvature singularity

Singularity

A spacetime is singular only if it has unbounded scalar curvature?

Singularity

Region through which the path cannot be extended

The presence of incomplete paths is a better definition of spacetime singularity

Let us consider

Quadratic Palatini gravity

Scalar fields

Is it a regular spacetime?

Is it a regular spacetime?

$$\lim_{\substack{r \to \infty \\ r \to \infty}} g^{\mu\nu} R_{\mu\nu} = -6/\beta$$
$$\lim_{\substack{r \to \infty}} R_{\mu\nu} R_{\mu\nu} = 36/\beta^2$$
$$\lim_{\substack{r \to \infty}} R_{\mu\nu\sigma\rho} R^{\mu\nu\sigma\rho} = 108/\beta^2$$

Is it a regular spacetime?

$$\lim_{\substack{r \to \infty \\ r \to \infty}} g^{\mu\nu} R_{\mu\nu} = -6/\beta$$
$$\lim_{\substack{r \to \infty}} R_{\mu\nu} R_{\mu\nu} = 36/\beta^2$$
$$\lim_{\substack{r \to \infty}} R_{\mu\nu\sigma\rho} R^{\mu\nu\sigma\rho} = 108/\beta^2$$

When to stop calculating?

ZM invariant	Degree	Asymptotic limit $(r ightarrow\infty)$
I_1	2	$48/\beta^2$
I_2	2	0
<i>I</i> ₃	3	$-96/eta^3$
<i>I</i> 4	3	0
<i>I</i> ₅	1	-6/eta
<i>I</i> ₆	2	$36/\beta^2$
<i>I</i> ₇	3	$-216/eta^3$
/ ₈	4	$1296/eta^4$
<i>I</i> 9	3	0
<i>I</i> ₁₀	3	0
I_{11}	4	$216/eta^4$
I_{12}	4	0
<i>I</i> ₁₃	5	0
<i>I</i> ₁₄	5	0
<i>I</i> ₁₅	4	$27/2\beta^4$
I_{16}	5	$-27/2\beta^{5}$
<i>I</i> ₁₇	5	0

So... is it regular? We have to look for incomplete paths!

So... is it regular? We have to look for incomplete paths!

For radial motion

For the massless case

$$u(\lambda) = \pm \frac{2E\lambda}{\sqrt{\alpha\beta}} + u_0$$

$$\lambda \to \frac{\sqrt{\alpha\beta}}{2E} u_0, \ u(\lambda) \to 0$$

The particle reaches the asymptotic region in finite affine time

For the massive case

$$u(\tau) = \frac{E}{\sqrt{\alpha}} \cos\left(\frac{2(\tau - \tau_0)}{\sqrt{\beta}}\right)$$

$$\tau \to \tau_0 + (\pi \sqrt{\beta}/4), \ u(\tau) \to 0$$

The particle reaches the asymptotic region in finite affine time

The spacetime has incomplete paths

The spacetime has incomplete paths

Path incompleteness says nothing about the nature of the singularity

What happens when an object approaches the singularity?

The singularity is strong if

The singularity is strong if

This is a statement about Jacobi fields!

Is this the case for our spacetime?

 $\int_{\tau_0}^{\tau} R_{\mu\nu} v^{\mu} v^{\nu} d\tau' \quad \clubsuit \quad \text{Converges}$ as one approaches the singularity

Not our case!

What if

 $V \to \text{not zero}$

The singularity is not strong, even though objects may still be destroyed at the singularity

Deformationally strong singularity

Deformationally strong singularity

It concerns the individual Jacobi fields

Deformationally strong singularity

It concerns the individual Jacobi fields

Which is our case!

 $\vec{J}_{\rm ang} \sim r$

 $V \to \infty$

Scalar curvature invariants are insufficient to point out the pathological nature of a spacetime

Path completeness is better suited

Not being a strong singularity does not imply in the non-destruction of observers

The study of individual Jacobi fields is better suited

