

Astrophysical images of static bosons stars in the Einstein-Friedberg-Lee-Sirlin theory

Pedro Lucas Brito de Sá Universidade Federal do Pará, Brazil

Haroldo Cilas Duarte Lima Junior

Universidade Federal do Maranhão, Brazil

Carlos Alberto Ruivo Herdeiro

Universidade de Aveiro, Portugal

Luís Carlos Bassalo Crispino

Universidade Federal do Pará, Brazil

Boson stars are non-topological solitons presented as viable candidates for black hole mimickers. For a certain set of parameters, these stars are stable and additionally admit a robust formation mechanism called gravitational cooling. The theoretical description of these solutions was first developed by Kaup in 1968, where he obtained a boson star solution by considering a complex scalar field within the framework of general relativity. The solution found by Kaup describes a static star without self-interaction terms, now known as mini-boson stars. We investigate static boson star within the Einstein-Friedberg-Lee-Sirlin (E-FLS) theory, focusina solutions on their phenomenological aspects, especially circular timelike orbits and circular photon orbits. To explore the astrophysical signatures of these stars, we generated images assuming they are surrounded by a geometrically thin accretion disk, considering both optically thin and optically thick disk models. We present astrophysical images of E-FLS stars considering different values of the parameters that describe these solutions.