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Introduction

• The optical appearance of the object is highly dependent on the optical
and geometrical properties of the emission source illuminating it.

• The background geometry is the solely responsible for the critical curve
(light ring).

• Disentangling the contributions from each other in such an image is
one of the main challenges in the field.

• But is there a way to be able to disentangle?
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Ray-tracing
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• Classifies the light-rays depending 

on the number of half-turns.

• Traces back the geodesic equation 

with an impact parameter, b, from 

our "screen" until reaching the 

compact object and leaving to the 

asymptotic infinity.
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Ray-tracing
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Ray-tracing
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• The transfer function, 𝑟𝑚, is the 
radius at which a light ray with 

impact parameter, 𝑏, crosses the 

m-th time the vertical axis.

• The steeper the line is the more 

demagnified the corresponding 

ring will be.
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Accretion disk modelling
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• The received luminosity depends 
on the emitted by the accretion 
disk

• Assume that
• Emits isotropically and 

monochromatically

• Optically and geometrically thin

• Placed perpendicular to us (face-on)
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Accretion disk1

Schematic draw of the configuration black hole-Earth 

Credit: Maria Julià

1. S. Gralla et al. Phys.Rev.D 100 (2019) 2, 024018
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• To simulate several stages of temporal evolution, we employ three 
canonical toy models with different inner edges, smoothly falling off 
asymptotically with different tails 
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Accretion disk models

Model I: The emission starts at the
innermost stable circular orbit for
time-like observers (ISCO).

Model II: The emission stars at the
critical curve itself. 

Model III: The emission starts right off 
the event horizon (in the black hole
case) or to the throat (in the
wormhole case).
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• The observed intensity is the emited corrected by two factors: 
1. The gravitational redshift

2. The additional luminosity picked on each interaction with the accretion disk

• In particular, it has the following form,

𝐼𝑜𝑏 𝑏 =෍

𝑚

𝐴2(𝑥) ቚ𝐼𝑒𝑚(𝑥)
𝑥=𝑥𝑚(𝑏)

with 𝐴 being the time metric component and 𝑥𝑚 the radius where a 
given light ray with impact parameter 𝑏 will have its m-th intersection
with the disk.
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Observed intensity
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Results
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• By Black Bounce1 (BB) we refer 
to the uniparametric family of 
solutions given by

𝐴 𝑥 = 1 −
2𝑀

𝑟2

𝑟2 𝑥 = 𝑥2 + 𝑎2

• Depending on the parameter a, 
the solution corresponds to a BH 
or a traversable wormhole.
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Black Bounce

𝑑𝑠2 = −𝐴 𝑥 𝑑𝑡2 +
𝑑𝑥2

𝐴 𝑥
+ 𝑟2 𝑥 𝑑Ω2

Remember the spherical line element

1. A. Simpson et al. JCAP 02 (2019) 042



M. Guerrero, G. J. Olmo, D. 

Rubiera-Garcia, D. Saez-Chillon

Gomez, JCAP 08 (2021) 036



• A generalized version of black bounce-type
geometry2, where the metric functions are given
by

𝐴 𝑥 = 1 −
2𝑀𝑥2

𝑥2 + 𝑎2 3/2

𝑟2 𝑥 = 𝑥2 + 𝑎2

• Depending on the parameter a, the solution
corresponds to a BH or a traversable wormhole
with one or two critical curves.
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Generalization of the Black Bounce

2. F. SN Lobo et al. Phys.Rev.D 103 (2021) 8, 084052
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Direct

Emitted intensity of the disk Observed intensity
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Generalization of the Black Bounce



Generalization of the Black Bounce
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Lensed
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Generalization of the Black Bounces

20

Photon ring
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The Eye of the Storm4

• The metric function is given by
the non-rotating limit of a family
of configurations4 as

𝐴 𝑟 = 1 −
2𝑀𝑒−

𝑙
𝑟

𝑟
• 𝑙>0 is a new scale

parameterizing the deviations
with respect to the
Schwarzschild solution.
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4. A. Simpson et al. JCAP 03 (2022) 03, 011 Potential
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4. A. Simpson et al. JCAP 03 (2022) 03, 011 Ray-tracing
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The Eye of the Storm5
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5. M. Guerrero, G. J. Olmo, D. Rubiera-Garcia, D. Saez-Chillon Gomez, Phys.Rev.D 106 (2022) 4, 
044070
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Conclusions

• A new playground for testing our favorite compact objects and alternative 
models to GR is currently at our disposal.

• Difficulty in disentangling the contributions from the background geometry 
and the accretion disk in the image of an object, though some 
discriminators (e.g. size of the shadow or the ring pattern) are already 
available. 

• Difficulty in managing the numeric of GRMHD. Resort to analytical 
approximations and/or toy models to get some glimpse on the new Physics 
that can be expected. 
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Thank you for your attention
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