

Gonzalo J. Olmo
Conpact objects between the compact of the Compact o Gonzalo J. Olmo Dept. Física Teórica & IFIC (UV-CSIC) Valencia (Spain)

IX AMAZONIAN WORKSHOP on Grav. & A. Models Belém, 17-21 June 2024

MOTIVATIONS I : basic reasons & some facts

In the search for **alternative nonsingular scenarios** for compact objects, one can go beyond GR or consider exotic matter sources.

There are many reasons to explore the phenomenology of exotic compact objects:

1) Are we really observing the BHs of GR? 2) Should we pay attention to what is observable, or only to what seems reasonable (today/to someone)?

For time efficiency, it is always best to consider new problems in simplified form. If analytical, much better.

Photo by **[Nik](https://unsplash.com/es/@helloimnik?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText)** on **[Unsplash](https://unsplash.com/es/fotos/z1d-LP8sjuI?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText)**

In the search for **exotic compact objects**, we observed that **wormholes** arise quite generically in **modified gravity theories beyond GR**.

Scalar geons in Born-Infeld gravity

V.I. Afonso^{1,2}, Gonzalo J. Olmo^{2,3} and D. Rubiera-Garcia⁴ Published 25 August 2017 • © 2017 IOP Publishing Ltd and Sissa Medialab Journal of Cosmology and Astroparticle Physics, Volume 2017, August 2017 Citation V.I. Afonso et al JCAP08(2017)031 DOI 10.1088/1475-7516/2017/08/031

New scalar compact objects in Ricci-based gravity theories

Victor I. Afonso^{1,2}, Gonzalo J. Olmo^{2,3}, Emanuele Orazi^{4,5} and Diego Rubiera-Garcia⁶ Published 13 December 2019 \cdot \odot 2019 IOP Publishing Ltd and Sissa Medialab

Journal of Cosmology and Astroparticle Physics, Volume 2019, December 2019

Citation Victor I. Afonso et al JCAP12(2019)044

DOI 10.1088/1475-7516/2019/12/044

Compact objects in quadratic Palatini gravity generated by a free scalar field

Renan B. Magalhães, Luís C. B. Crispino, and Gonzalo J. Olmo Phys. Rev. D 105, 064007 - Published 4 March 2022

With a 2+1 **scalar field model**, we will see that even more exotic structures may arise within GR.

Birth of baby universes from gravitational collapse in a modified-gravity scenario

Andreu Masó-Ferrando¹, Nicolas Sanchis-Gual^{2,3}, José A. Font^{2,4} and Gonzalo J. Olmo^{1,5} Published 15 June 2023 · @ 2023 IOP Publishing Ltd and Sissa Medialab

Journal of Cosmology and Astroparticle Physics, Volume 2023, June 2023

Citation Andreu Masó-Ferrando et al JCAP06(2023)028

DOI 10.1088/1475-7516/2023/06/028

Echoes from bounded universes

Renan B. Magalhães, ^{1, 2, *} Andreu Masó-Ferrando, 2 , † Flavio Bombacigno,^{2,| $\frac{1}{4}$} Gonzalo J. Olmo,^{2,3,|§}| and Luís C. B. Crispino^{1,4,|¶}

MOTIVATIONS II: basic reasons & some facts

FIRST: THE MODEL

2. $(2 + 1)$ -Einstein Theory with Nonlinear Scalar Field Let us start by defining the action for $(2 + 1)$ -Einstein gravity coupled to a scalar field as

$$
S = \int d^3x \sqrt{-g} \left(\frac{1}{2\kappa} \mathcal{R} - \frac{1}{2} L(Y) \right), \tag{1}
$$

where $\mathcal{R} \equiv g^{\mu\nu} R_{\mu\nu}$ is the usual curvature scalar of a space-time metric $g_{\mu\nu}$ and Ricci tensor $R_{\mu\nu}$, while $L(Y)$ is an arbitrary function of the scalar field invariant $Y \equiv g^{\mu\nu}\partial_{\mu}\phi\partial_{\nu}\phi$, and

We consider standard GR but with a **noncanonical scalar field.** Impose staticity and circular symmetry. This can be done by hand.

Work by R.V. Maluf, G. Mora-Pérez, GJO, and D. Rubiera-García, Universe 2024, 10, 258

$$
T_{\mu\nu} = \left(L_Y \partial_\mu \phi \partial_\nu \phi - \frac{1}{2}g_{\mu\nu}L\right), \qquad \partial_x(\sqrt{-g}g^{xx}L_Y \phi_x) = 0,
$$

$$
ds^{2} = -e^{A(x)}dt^{2} + e^{A(x)} \frac{L_{Y}^{2}}{W^{2}(x)}dx^{2} + \frac{1}{W^{2}(x)}d\theta^{2}, \quad \oint x x \stackrel{\text{def}}{=} 0
$$

The structure of the line element is chosen to simplify the scalar field equation

SECOND: THE EQUATIONS

$$
R_t^t = Y\left(\frac{A_x L_{Y_x}}{2L_Y} - \frac{A_{xx}}{2}\right) = \kappa (L - Y L_Y),
$$

\n
$$
R_x^x = Y\left(\frac{A_x L_{Y_x}}{2L_Y} - \frac{A_x W_x}{W} - \frac{L_{Y_x} W_x}{L_Y W}\right)
$$

\n
$$
- \frac{W_x^2}{W^2} - \frac{A_{xx}}{2} + \frac{W_{xx}}{W}\right) = \kappa L,
$$

\n
$$
R_\theta^\theta = Y\left(-\frac{L_{Y_x} W_x}{L_Y W} - \frac{W_x^2}{W^2} + \frac{W_{xx}}{W}\right)
$$

\n
$$
= \kappa (L - Y L_Y),
$$

The first equation can be written as:

$$
A_{xx} - A_x \frac{L_{Y_x}}{L_Y} = -2\kappa \frac{(L - Y L_Y)}{Y}
$$

And a formal solution is:

$$
A_x = L_Y \left(c_1 - 2\kappa \int dx \frac{(L - Y L_Y)}{Y L_Y} \right)
$$

which allows us to obtain

If we take
$$
L(Y) = \lambda Y^{\alpha}
$$
 then: $A_x = -\lambda \alpha Y^{\alpha-1} \Delta_1$ where $\Delta_1 = \frac{2\kappa(1-\alpha)}{\alpha} (x - x_1)$

The combination
$$
R_x^x - R_t^t - R_\theta^\theta
$$
 leads to $\frac{A_x W_x}{W} = \kappa \frac{(L - 2Y L_Y)}{Y}$

$$
\gamma \equiv \frac{(2\alpha - 1)}{(1 - \alpha)} \quad W(x) = \frac{1}{r_0} \left(\frac{x - x_1}{x_0}\right)^{\gamma/2}
$$

Recall that $W(x)=1/r(x)$ Shift symmetry in x

THIRD: MORE EQUATIONS & SOLUTIONS

Using

Repuls *λ* = − |*λ*|

Using W(x) in the angular equation we find:
$$
Y_x - \frac{2\kappa}{\alpha \Delta_1} Y = \frac{\lambda \alpha \Delta_1}{(2\alpha - 1)} Y^{\alpha}
$$

This **Bernoulli equation** can be solved exactly and allows to solve for $A_x = -\lambda \alpha Y^{\alpha-1}$
$$
e^{A(x)} = \Delta_2^{-\gamma}
$$
 where
$$
\Delta_2 = c_2 \left[1 + \frac{2\lambda \kappa (1 - \alpha) x_0}{\gamma c_2} \left(\frac{r_0}{r} \right)^{2/\gamma} \right] = \left[1 \pm \left(\frac{R_0}{r} \right)^{2/\gamma} \right]
$$

Attractive:
$$
ds^{2} = -\frac{1}{\left(1 + \left(\frac{R_{0}}{r}\right)^{\frac{2}{\gamma}}\right)^{\gamma}}dt^{2} + \frac{\sigma_{0}^{2}dr^{2}}{\left(1 + \left(\frac{R_{0}}{r}\right)^{\frac{2}{\gamma}}\right)^{2+\gamma}} + r^{2}d
$$

$$
\begin{array}{c}\n\mathbf{sive:} \\
\hline\n\end{array}
$$

$$
ds^{2} = -\frac{1}{\left(1 - \left(\frac{R_{0}}{r}\right)^{\frac{2}{\gamma}}\right)^{\gamma}}dt^{2} + \frac{\sigma_{0}^{2}dr^{2}}{\left(1 - \left(\frac{R_{0}}{r}\right)^{\frac{2}{\gamma}}\right)^{2+\gamma}} + r^{2}d
$$

λ = + |*λ*|

Two families of **asymptotically flat** solutions: *λ* = ± |*λ*|

$$
ds^{2} = -\Delta_{2}^{-\gamma}dt^{2} + \sigma_{0}^{2}\Delta_{2}^{-(2+\gamma)}dr^{2} + r^{2}d\theta^{2}
$$

 $\frac{1}{2} < \alpha < 1$ corresponds to the interval $\gamma > 0$

$$
\gamma \equiv \frac{(2\alpha-1)}{(1-\alpha)}
$$

FOURTH: CURVATURES

Attractive: *λ* = + |*λ*|

$$
ds^{2} = -\frac{1}{\left(1 + \left(\frac{R_{0}}{r}\right)^{\frac{2}{\gamma}}\right)^{\gamma}}dt^{2} + \frac{\sigma_{0}^{2}dr^{2}}{\left(1 + \left(\frac{R_{0}}{r}\right)^{\frac{2}{\gamma}}\right)^{2+\gamma}} + r^{2}d\theta
$$

$$
R = \pm \frac{2(\gamma + 4)\left(1 \pm \left(\frac{R_0}{r}\right)^{\frac{2}{\gamma}}\right)^{\gamma + 1}\left(\frac{R_0}{r}\right)^{\frac{2}{\gamma}}}{\gamma \sigma_0^2 r^2}
$$

$$
K = \frac{4(3\gamma^2 + 8\gamma + 8)\left(1 \pm \left(\frac{R_0}{r}\right)^{\frac{2}{\gamma}}\right)^{2(\gamma + 1)}\left(\frac{R_0}{r}\right)^{\frac{4}{\gamma}}}{\gamma^2 \sigma_0^4 r^4}
$$

 $ds^{2} = -\frac{1}{\left(1 - \left(\frac{R_{0}}{r}\right)^{\frac{2}{\gamma}}\right)^{\gamma}}dt^{2} + \frac{\sigma_{0}^{2}dr^{2}}{\left(1 - \left(\frac{R_{0}}{r}\right)^{\frac{2}{\gamma}}\right)^{2+\gamma}} + r^{2}d\theta^{2}$ **Repulsive:** *λ* = − |*λ*|

The attractive case has divergent curvatures as $r \to 0$ and incomplete geodesics.

The repulsive case has vanishing curvatures as $r \to R_0$ and complete geodesics.

FIFTH: GEODESICS

All geodesics are complete. $r = R_0$ is a boundary of the manifold

SIXTH: ENERGY DENSITY

Considering *λ* < 0**:**

$$
Y = Y_0 \frac{\left(1 \pm \hat{r}^{-2/\gamma}\right)}{\hat{r}^{\frac{2(2+\gamma)}{\gamma}}}
$$

Figure 3. Left: three-dimensional representation of the kinetic term $Y = g^{\mu\nu}\partial_{\mu}\phi\partial_{\nu}\phi$ when $\lambda < 0$ for the case $\gamma = 1$. Right: same representation for $\gamma = 1/2$ (blue) and $\gamma = 2$ (orange). Note how the more compact solution $\gamma = 1/2$ is always hidden by the $\gamma = 2$ one except at the innermost region. The different amplitudes of the maxima are also evident in this plot.

Work by R.V. Maluf, G. Mora-Pérez, GJO, and D. Rubiera-García, Universe 2024, 10, 258 DOI: https://doi.org/10.3390/universe10060258

All geodesics are complete. $r = R_0$ is a boundary of the manifold

CONCLUSION

Geodesic completeness is achieved non-perturbatively in a compact region.

Nonsingular space-time with an internal boundary found in a 2+1 scalar field model built on *mathematical simplicity* **arguments.**

OPEN QUESTIONS

- Are these configurations stable?
- Can we add regular attractive matter on top of this field?
- Could we tune the sign of λ to localize the repulsive region?
- Can objects of this kind exist in 3+1 dimensions?
- Can current codes support these boundary conditions?
- What would the observable features of such objects be?

Thank you!!!

GOBIERNO MINISTERIO
DE ESPAÑA DE ECONOMÍA, INDUSTRIA
Y COMPETITIVIDAD MINISTERIO

Questions … Comments ???

