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Wavefronts passing through a compact body
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Waves passing over a submerged island

T. Torres, M. Lloyd, SD & S. Weinfurtner, Phys. Rev. Res. 4 (2022) 3, 033210.
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Motivation

Q. Under what circumstances can perfect focussing occur?

A. Prof. Shigeo Ohkubo: Consider gradient-index lenses in optics.
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The Maxwell fisheye lens

In 1853, a curious problem appeared in the Dublin and Cambridge
Mathematical Journal (Problem 3, volume VIII, p188).

The reader was challenged to find an optical refractive medium
such that all the rays proceeding from any point in the medium
will meet again accurately at another point, and such that the
path of every ray in the medium is a segment of a circle.

In the 1854 solution, the anonymous question-setter remarked that
“The possibility of the existence of a medium of this kind
possessing remarkable optical properties, was suggested by the
contemplation of the structure of the crystalline lens in fish”.

Eleven years later, the solution appeared in The Scientific Papers
of James Clerk Maxwell.
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The Maxwell fisheye lens

Maxwell’s fisheye lens of radius R has a refractive index

n(r) =
2

1 + r2/R2
.

Rays starting on the rim meet again on the opposite side.
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The Maxwell fisheye lens

The wavefronts are orthogonal to the rays:
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The extended Maxwell fisheye lens

In the extended lens, rays emanating from any point r = r0 are
focussed at a conjugate point r1 = −R2/r0.
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The rays and wavefronts in an extended fisheye lens form
Apollonian circles.
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The extended Maxwell fisheye lens

Is there a natural geometrical re-imagining?

Yes.

r

χ

Rays in the lens ⇔ Null geodesics on a sphere

r = R tan(χ/2)
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Rays in a lens ⇔ Null geodesics on a curved space

Action principle: Fermat’s principle of least time:

SFermat =

∫ tB

tA

dt =
1

c

∫ xB

xA

n(x)dℓ,

where dℓ =
√
dx · dx =

√
δijdxidxj .

Here n(x)dℓ is the element of path length on a Riemannian space

dΣ2 = gijdx
idxj with gij ≡ n2(x)δij .

The rays in the lens map to null geodesics of a spacetime with
line element

ds2 = −dt2 + dΣ2.
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Rays in a lens ⇔ Null geodesics on a curved space

For Maxwell’s fisheye lens,

dΣ2 =

(
2

1 + r2/R2

)2 (
dr2 + r2dΩ2

n

)

With the coordinate transformation r = R tan(χ/2) this becomes

dΣ2 = R2
(
dχ2 + sin2 χdΩ2

n

)
.

This is the line element of a (n+ 1)-hypersphere.
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Conformally-related spacetimes

In the remainder of this talk, we will consider 4D spacetimes that
are conformal to a hypersphere, with line element

ds2 = Ω̂2(x)
(
−dt2 + dΣ2

)
, dΣ2 = R2

(
dχ2 + sin2 χdΩ2

)
,

where Ω̂(x) > 0 everywhere, and dΩ2 = dθ2 + sin2 θdϕ2.

i.e. “Spacetimes conformal to the Maxwell fisheye lens”.

Conformally-related spacetimes share the same null geodesics.

The conformal factor Ω̂(x) can be a function of space and time
(i.e. dynamics).

Sam Dolan (Sheffield) The fisheye and the sphere 18th June 2024 15 / 30



Conformally-related spacetimes

In the remainder of this talk, we will consider 4D spacetimes that
are conformal to a hypersphere, with line element

ds2 = Ω̂2(x)
(
−dt2 + dΣ2

)
, dΣ2 = R2

(
dχ2 + sin2 χdΩ2

)
,

where Ω̂(x) > 0 everywhere, and dΩ2 = dθ2 + sin2 θdϕ2.

i.e. “Spacetimes conformal to the Maxwell fisheye lens”.

Conformally-related spacetimes share the same null geodesics.

The conformal factor Ω̂(x) can be a function of space and time
(i.e. dynamics).

Sam Dolan (Sheffield) The fisheye and the sphere 18th June 2024 15 / 30



Conformally-related spacetimes

In the remainder of this talk, we will consider 4D spacetimes that
are conformal to a hypersphere, with line element

ds2 = Ω̂2(x)
(
−dt2 + dΣ2

)
, dΣ2 = R2

(
dχ2 + sin2 χdΩ2

)
,

where Ω̂(x) > 0 everywhere, and dΩ2 = dθ2 + sin2 θdϕ2.

i.e. “Spacetimes conformal to the Maxwell fisheye lens”.

Conformally-related spacetimes share the same null geodesics.

The conformal factor Ω̂(x) can be a function of space and time
(i.e. dynamics).

Sam Dolan (Sheffield) The fisheye and the sphere 18th June 2024 15 / 30



Conformally-related spacetimes

In the remainder of this talk, we will consider 4D spacetimes that
are conformal to a hypersphere, with line element

ds2 = Ω̂2(x)
(
−dt2 + dΣ2

)
, dΣ2 = R2

(
dχ2 + sin2 χdΩ2

)
,

where Ω̂(x) > 0 everywhere, and dΩ2 = dθ2 + sin2 θdϕ2.

i.e. “Spacetimes conformal to the Maxwell fisheye lens”.

Conformally-related spacetimes share the same null geodesics.

The conformal factor Ω̂(x) can be a function of space and time
(i.e. dynamics).

Sam Dolan (Sheffield) The fisheye and the sphere 18th June 2024 15 / 30



Conformal symmetry: key results

Consider two spacetimes related by a conformal factor:

S :
(
M, gµν = Ω̂2(x)g̃µν

)
and S̃ : (M, g̃µν)

1 Null geodesics.

If xµ(λ) is a null geodesic of S then
x̃µ(λ) = xµ(λ) is a null geodesic of S̃.

2 Spacetime symmetries. If Xµ is a conformal Killing vector field
(CKV) of S then X̃µ = Xµ is a CKV of S̃.

3 Conformally-coupled scalar fields. If Φ(x) satisfies

□Φ− (n−2)
4(n−1)RΦ = 0 on S then Φ̃ = Ω̂(n−2)/2Φ satisfies the

equivalent wave equation on S̃.

4 Maxwell fields. If Fµν satisfies the source-free Maxwell equations
on S then F̃µν = Fµν satisfies the source-free Max. eqs. on S̃.

5 Gravitational fields. The Weyl tensor satisfies C̃µ
νσλ = Cµ

νσλ .
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Physical spacetimes

We now shift our attention to ‘physical’ spacetimes that:

satisfy the Einstein field equations

Rµν −
1

2
Rgµν + Λgµν =

8πG

c4
Tµν ,

where Rµν is the Ricci tensor derived from the metric;

have a physically-reasonable stress-energy tensor Tµν such that

∇µT
µν = 0.

Q. Are any ‘physical’ spacetimes conformal to Maxwell’s fisheye lens?
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The interior Schwarzschild solution

In 1916, Schwarzschild presented the interior solution for a ‘star’
that is a spherically-symmetric incompressible ball of fluid of
uniform density µ̂ and mass M = 4

3 µ̂R
3.

In Schwarzschild coordinates {t, r, θ, ϕ},

ds2 = −A(r)dt2 +B−1(r)dr2 + r2dΩ2,

A(r) =
1

4

(√
B(r)− 3

√
B(R)

)2
, B(r) = 1− 2Mr2

R3
.

The pressure P (r) is a function of radius such that P (R) = 0 at
the surface.

Buchdahl bound: the central pressure P (0) diverges as
R → 9M/4.
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The interior Schwarzschild solution

The interior solution matches smoothly with the exterior
Schwarschild solution at the star’s surface r = R.

R/M = 2.25

R/M = 3

R/M = 6

R/M = 12

5 10 15 20

r

M

0.2

0.4

0.6

0.8

-gtt
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The interior Schwarzschild solution

The interior solution can also be written in isotropic
coordinates {t, ρ, θ, ϕ} (Wyman 1946) as

ds2 = Ω̂2(ρ)
{
−dt2 + n2(ρ)

(
dρ2 + ρ2dΩ2

)}
where

Ω̂ =

(
1− M

a

)(
1 + M

2a

)
(
1 + ρ2

R2

)
(
1 + Mρ2

2a3

) ,
n(ρ) =

(1 +M/2a)4

2(1−M/a)

2

1 + ρ2/R2
.

Here a is the isotropic radius of the star:

R = a

(
1 +

M

2a

)2

⇔ a =
R

2

(
1−M/R+

√
1− 2M/R

)
.
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R = a

(
1 +

M

2a

)2

⇔ a =
R

2

(
1−M/R+

√
1− 2M/R

)
.
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The interior Schwarzschild solution

Now making the coordinate transformation ρ = R tan(χ/2),

ds2 = Ω̂2(ρ)
{
−dt2 + R̂2

(
dχ2 + sin2 χdΩ2

)}

Here

R ≡

√
a3

M

(1−M/a)

(1−M/4a)
R̂ =

(1 +M/2a)4

2(1−M/a)
R.

The centre of the star is at χ = 0, and its surface at χ = χ0,

χ0 = 2arctan

(√
1−M/4a

a/M − 1

)
.

Light-ring radius: R = 3M , a = (1 +
√
3/2)M , χ0 = π/2.

Buchdahl limit: a → M , χ0 → π.
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A neutron star analogue

For a constant-density star embedded in Schwarzschild spacetime,

n(ρ) =


(1+M/2a)4

(1−M/a)(1+ρ2/R2)
, ρ ≤ a

(1+M/2ρ)3

(1−M/2ρ) , ρ ≥ a.

R/M = 3

R/M = 4

R/M = 6

R/M = 10

0 2 4 6 8 10 12

ρ

M
0

1

2

3

4

5

6
n

See also: W. Xiao and H. Chen, Optics Express 31, 11490 (2023).
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Dynamics?

Q. Is Maxwell’s fisheye lens of any relevance to collapse scenarios?
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Dynamical situations?

Q. Is Maxwell’s fisheye lens of any relevance to collapse scenarios?
A. Yes.

Oppenheimer-Snyder collapse:

a shrinking ball of dust of
zero pressure and uniform density µ̂(τ) embedded in
Schwarschild spacetime.

The O-S interior metric is simply a Friedmann spacetime,

ds2 = −dτ2 + a2(τ)
(
dχ2 + sin2 χdΩ2

)
= a2(η)

{
−dη2 + dχ2 + sin2 χdΩ2

}
.

By embedding the dust ball in Schwarzschild spacetime we derive
that the surface of the dust ball follows a radial geodesic.

Schwarzschild interior: uniform density, constant acceleration.

O-S collapse: uniform density, zero acceleration.

Q. Are these two well-known spacetimes part of a family?
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The Nariai-Tomita solution (1968)

H. Nariai & K. Tomita, Progress of Theoretical Physics 40, 679 (1968).

ds2 = e2ν(τ,ρ)
{
−dτ2 + n2(τ, ρ)

(
dρ2 + ρ2dΩ2)}

where

n(τ, ρ) =
a(τ)

2(1− β(τ))
· 2

1 + ρ2/R2
,

eν(τ,ρ) = 1− (β(τ)− b(τ))(1− ρ2/r2b )

1− b(τ)(1− ρ2/r2b )
=

(
1− β(τ)

1− b(τ)

)(
1 + ρ2/R2

1 + ρ2/R2
b

)
,

R2 ≡ a20
(1− β(τ))

β(τ)
, R2

b ≡ a20
(1− b(τ))

b(τ)
,

β(τ) ≡ b(τ)− a(τ)
db

da
.

A model for a dynamical sphere of uniform density µ̂(τ) and constant mass.

The pressure P (τ, ρ) zero on the surface at ρ = a0 : P (τ, a0) = 0.

Q. What is the physical meaning of the free functions a(τ), b(τ) and β(τ)?
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The Nariai-Tomita model in Schwarzschild spacetime

It is natural to embed the Nariai-Tomita model as a ‘star’ in
Schwarzschild spacetime.

Two spacetimes match on a hypersurface Σ if their induced
metrics hij and extrinsic curvatures Kij match on Σ.

From matching at the star’s surface at Schwarschild coordinate
r0(τ), we derive that:

a0 a(τ) = r0(τ),

b(τ) =
1

2
(1− E0(τ)) ,

β(τ) =
1

2
(1− E0(τ) + r0(τ)α0(τ)) .

E0 is the specific energy and α0 is the proper acceleration of
the surface’s trajectory in the Schwarzschild spacetime.
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The Nariai-Tomita model in Schwarzschild spacetime

β(τ) =
1

2
(1− E0(τ) + r0(τ)α0(τ)) .

From the EoM it follows that β̇ = 1
2 α̇0r0.

Hence if the proper acceleration α0(τ) is constant, then β(τ) is
also constant.

In such cases, since

R2 ≡ a20
(1− β(τ))

β(τ)

then the proportion of the Maxwell fisheye lens encompassed by
the interior is also constant.
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Constant acceleration α0 and uniform density

By applying the standard coordinate transformation
ρ = R tan(χ/2), the interior geometry takes the form

ds2 = e2ν(τ,ρ)
{
−dτ2 +R2(τ)

(
dχ2 + sin2 χdΩ2

)}

R(τ) ≡ r0(τ)√
1− (E0 − r0α0)2

.

The extent of the hypersphere encompassed is fixed, at:

χ0 = cos−1 (E0 − α0r0)

⇒ R(τ) = r0(τ)/ sin(χ0).

The spacetime is conformal to a hypersphere. Hence null geodesics
are focussed just as in the Maxwell fisheye lens.

The interior Schwarzschild (α0 > 0) and Oppenheimer-Snyder
collapse (α0 = 0) are special cases of the above result.
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Asymptotic collapse

An interesting special case is a uniform sphere which starts at
r0 = R and whose (constant) proper acceleration α0 is only just
insufficient to prevent collapse: α0 = (1− ϵ) M

R2
√

f(R)
, ϵ ≪ 1.

In this scenario, we can obtain many results for fields and waves in
closed form.

Warning: None of the uniform density star models considered
here satisfy realistic Equations of State, µ̂(P ).
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Conclusions

Perfect focussing occurs naturally in the Maxwell fisheye lens.

Rays in the lens map to null geodesics on a (hyper)sphere.

Several well-known solutions to the Einstein equations are
conformal to hyperspherical geometries:

Friedmann spacetime in cosmology
Oppenheimer-Snyder collapsing dust ball
The interior Schwarzschild solution

We have shown here that a wider class exists: Nariai-Tomita stars
embedded in the Schwarzschild geometry.

If the star’s surface has a constant proper acceleration, then these
geometries will focus null geodesics exactly like a fixed portion of a
Maxwell fisheye lens.

Using conformal symmetry, many results for fields and rays can be
obtained in closed form for (simplified) collapse scenarios.
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