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Our Goals:

• Understand the frameworks to model 
compact objects and ultracompact 
objects in general relativity.

How will we do it?

• What are compact objects?

• Types of compact objects? How to 
model them?

• What are exotic compact objects? Why 
do we care?

• How to model them?

• How to test for them

Compact Object Course - Overview
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Some time ago…
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Now I will try give you a (short) updated 
version!
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Back to basics

What defines how compact a celestial body is?
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Back to basics

What defines how compact a celestial body is?

What macroscopic quantities are needed to define the gravitational 
field of a finite-size body?

1. Mass

2. Radius
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Back to basics

∞

What defines how compact a celestial body is?

Escape velocity:

Dimensionless quantity:

What if light cannot escape?

“Dark Star” – John Mitchel, 1783 
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Compact Objects in Our Universe
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[Table 1.1: Black Holes, White Dwarfs and Neutron Stars: The Physics of Compact Objects, 
Shapiro & Teukolsky]



Compact Object (CO): 
Object who's exterior spacetime contains an ISCO.

Compact Objects: A definition
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Compact Object (CO): 
Object who's exterior spacetime contains an ISCO.

Ultracompact Object (UCO): 
Object who's exterior spacetime contains a photonsphere.

Compact Objects: A definition

Exotic Compact Object (ECO): 
Compact object that is not a black hole nor a neutron star.

Black Hole Mimicker:
Ultracompact object that is mimics the properties of a black hole.
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Compact Objects in Our Universe

< 8 Solar Masses [8, 25] Solar Mass > 25 Solar Mass

White Dwarf Neutron Star Black Hole

7



“In my entire scientific life, extending over forty-five years, the most shattering 
experience has been the realization that an exact solution of Einstein's 
equations of general relativity, provides the absolute exact representation of 
untold numbers of massive black holes that populate the universe. “

S. Chandrasekhar, 
The Nora and Edward Ryerson Lecture, Chicago 1975

Black Holes
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“In my entire scientific life, extending over forty-five years, the most shattering 
experience has been the realization that an exact solution of Einstein's 
equations of general relativity, provides the absolute exact representation of 
untold numbers of massive black holes that populate the universe. “

S. Chandrasekhar, 
The Nora and Edward Ryerson Lecture, Chicago 1975

Black Holes are simple and 
economical!

One single exact solution:
• Stellar BHs
• Supermassive BHs

Only requires two/three parameters
• Mass, Angular Momentum, Charge

Black Holes
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Neutron Stars

Layered Structure:

Outer Crust:
• Coulomb lattice with heavy nuclei & 

degenerate electron gas

Inner Crust:
• Lattice of neutron-rich nuclei together with 

superfluid neutron gas and electron gas.

Outer Core: 
• A homogeneous fluids layer, npeμ-matter.

Inner Core:
• Big questions here: deconfined quark 

matter, hyperons, Bose-Einstein meson 
condensates…

Quite complicated to model!
Neutron star EoS is one of the main open problems 

in astrophysics!
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Self-gravitating fluids

Outside the star:

Inside the star:
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Tools to build a star!

The extension to GR was done in 1939.

[Clip of Oppenheimer, 2023]
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Tools to build a star!

1) Our set of equations (from GR):
• Einstein’s equations;
• Stress-energy tensor conservation.

2) Specify the form of metric ;
• e.g. spherically symmetric;

3) Some form for the stress-energy tensor:
• Perfect-fluid;

Tolman-Oppenheimer-Volkoff
 (TOV )Equations
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The final ingredient:  Equation of State!

Specifies the microphysics of the body. In general, can be quite complex.

Simplification: The fluid is adiabatic and isentropic.

Tools to build a star!

Most familiar form!
13



Fluid-ball conjecture

Static and asymptotically flat fluid solutions are 
spherically symmetric!

Proved by [Massod-ul-Alam, 2007] for realistic case 
scenarios.

Impossible!
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Equation of State

In general: No analytical solution.

Special case: Constant density star.

What happens to our star when we increase the central pressure?
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Equation of State

Isotropy
Decreasing 

density
StaticityClassic GR

Non-negative 

density and 

pressure

Perfect fluid

Buchdahl’s Bound:

Under some set of 
assumptions, the compactness 
of a self-gravitating object must 
be bounded by:
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Maximum Compactness of Stars

Let’s go back to Buchdahl. We know that 
Buchdahl is a limit, but does it make physical 
sense?

Incompressible fluid = Infinite Sound Speed! Not 
very realistic.

?

1717



Maximum Compactness of Stars

Let’s go back to Buchdahl. We know that 
Buchdahl is a limit, but does it make physical 
sense?

Incompressible fluid = Infinite Sound Speed! Not 
very realistic.

?
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What is the highest compactness of a 
physically viable compact object?

[My very real ultracompact backpack in Marajó]
17



When you cannot do it analytically – Integrate numerically!

1. Pick a value of the central density. The equation of state gives the central 
pressure.

2. Integrate the system from r=0 outwards. EOS is used at each point to calculate 
the density

3. When to stop calculation?

• When Pressure is zero, we have found the radius of the star!

4. What to do with the initial value of the potential?

Integration of TOV equations

19



Some analytical EoS

• Constant Density: Checked! Leads to Buchdahl limit.
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Some analytical EoS

• Constant Density: Checked! Leads to Buchdahl limit.

• Constant adiabatic index: Two families of EOS: (Tooper, 1965)

1) Polytropes (Tooper, 1965);              2) Linear constant sound speed (Bondi, 1964):

 

no bounded solutions for n>5   Scale-invariant, but no bounded solutions!

• Affine constant sound speed: 

Always bounded. This class includes Christodoulou’s hard phase material and MIT bag model (quark stars).
20



Maximum Compactness of Stars

21

With constant sound speed EoS we can look for bounds on 
viable stars!



Maximum Compactness of Stars

Black Hole:

Buchdahl Bound:

Causal Buchdahl Bound:

Causal Buchdahl bound + Radial Stability:

21[Urbano & Vermaee, 1810.07137]

With constant sound speed EoS we can look for bounds on 
viable stars!



Realistic approximations of NSs

Tabulated EOS for Neutron Stars:

 Construct EOS tables based on nuclear physics models. (APR4, Sly, MPA, H4, MS1, etc..)

“Soft” EoS are 
preferred over 

“Stiff” EoS

[Ligo/Virgo, 1805.11581]
22



Realistic approximations of NSs

Piecewise Polytrope

 Different neutron star layers are approximated by different polytropes. (3 is good enough).

• Crust: Degenerate gas of relativistic electrons. (see Chapter 2, Black Holes, White Dwarfs and Neutron 
Stars: The Physics of Compact Objects, Shapiro & Teukolsky)
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Realistic approximations of NSs

Piecewise Polytrope

 Different neutron star layers are approximated by different polytropes. (3 is good enough).

• Crust: Degenerate gas of relativistic electrons. (see Chapter 2, Black Holes, White Dwarfs and Neutron 
Stars: The Physics of Compact Objects, Shapiro & Teukolsky)

• Middle: Degenerate gas of non-relativistic neutrons.

• Core: Gas of ultra-relativistic quarks/fermions.

 All pieces are “Soft” EoS.
23



Maximum Compactness of Stars

24

Black Hole

Limit

Ultracompact Objects

Compact Objects

Supermassive BHs

(Photosphere) (ISCO)(Buchdahl)(horizon)

Neutron Stars

Stellar BHs

Casual Fluid StarsSuperluminal

Fluid Stars



A Zoo of Compact Objects

24

Black Hole

Limit

Ultracompact Objects

Compact Objects

Supermassive BHs

(Photosphere) (ISCO)(Buchdahl)(horizon)

Neutron Stars

Stellar BHs

Boson StarsAnisotropic StarsQuantum 

Corrections

Fuzzballs, gravastars, 

wormholes, etc…



Exotic Universe

Why do we care about this?

Motivation #1: “The skeptical”. 
Black holes are also “exotic”. Singularity at the center and a horizon as a surface.

Motivation #2: “The idealist”
Black holes and Neutron stars may be just 2 species in a larger Zoo of Compact Objects.

Motivation #3: “The pragmatic”
Constraining everything else would help us validate the black hole model.

25
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Last lecture:

Compact Objects and Perfect Fluids:

• What are compact objects?

• Self-gravitating fluids

• Equation of State

• Buchdahl limit

1



• If an ECO represents a BH alternative it should have less problems than BHs have.

• If they form in Nature, we want:

1. Horizonless and Singularity free!

Regular Inside

Our ECO Wishlist
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• If an ECO represents a BH alternative it should have less problems than BHs have.

• If they form in Nature, we want:

1. Horizonless and Singularity free!

2. Stable

How long can 
it live?

Our ECO Wishlist
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• If an ECO represents a BH alternative it should have less problems than BHs have.

• If they form in Nature, we want:

1. Horizonless and Singularity free!

2. Stable

3. Formation mechanism

Time-evolution

ECO

Physically Reasonable Initial Conditions

Our ECO Wishlist
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• If an ECO represents a BH alternative it should have less problems than BHs have.

• If they form in Nature, we want:

1. Horizonless and Singularity free!

2. Stable

3. Formation mechanism

4. Well understood dynamics

ECO ECO+

ECO?
BH?

Our ECO Wishlist
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2 Approaches

Parametrized 
ECO

Model

Build an ECO modelled with some 
general parametersORPick your favourite and study it!

3



Compass to construct ECOs

Isotropy
Decreasing 

density
StaticityClassic GR

Non-negative 

density and 

pressure

Perfect fluid

Buchdahl’s Bound:

Under some set of 
assumptions, the compactness 
of a self-gravitating object must 
be bounded by:

4

Exotic

matter
Anisotropic 

fluids

Multi-

layered 

objects

Deformed 

objects

ECOs in 

modified

gravity

Other matter 

fields

X



Exotic Compact Object Models
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Interior Model Boundary conditions 
on the surface

External Vacuum Solution 
(typically, Schwarzschild or Kerr)

Fig. from [Cardoso, Franzin, Pani, 2016]

Case 1: The “vanilla” wormhole case.



Exotic Compact Object Models
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Interior Model Boundary conditions 
on the surface

External Vacuum Solution 
(typically, Schwarzschild or Kerr)

Case 2: The “gravastar” case. [Mazur, Mottola, 2001]

[Visser, Whiltshire, 2004]



Exotic Compact Object Models

6

Interior Model Boundary conditions 
on the surface

External Vacuum Solution 
(typically, Schwarzschild or Kerr)

Case 2: The “gravastar” case. [Mazur, Mottola, 2001]

[Visser, Whiltshire, 2004]

This construction of ECOs is very forced.

• No dynamics or formation;

• Stability studies are complicated.



Anisotropic Stars
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Isotropy
Decreasing 

density
StaticityClassic GR

Non-negative 

density and 

pressure

Perfect fluid

Exotic

matter
Anisotropic 

fluids

Multi-

layered 

objects

Deformed 

objects

ECOs in 

modified

gravity

Other matter 

fields

X
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Anisotropic Stars
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• The first discussion of anisotropy in the context of stars dates from [J. Jeans, 1922]
• Context of “Kapteyn-spheroidal stars”.

• “Recently” the interest in anisotropic stars started with [Bowers & Liang, 1974].

• Several works in the past have explored the structure and properties of anisotropic 
stars. 
[Heintzmann & Hillebrand, 1975;  Herrera, 2013; Biswas & Bose, 2019; etc.]

• However, anisotropic stars have some problems.



Stress-energy tensor of an anisotropic fluids

 

Anisotropic Stars

9



Stress-energy tensor of an anisotropic fluids

Einstein’s equations + stress-energy tensor conservation for this matter leads to:

Anisotropic TOV equations:
 
 Same as isotropic except:  

Anisotropic Stars
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Stress-energy tensor of an anisotropic fluids

Einstein’s equations + stress-energy tensor conservation for this matter leads to:

Anisotropic TOV equations:
 
 Same as isotropic except:  

Anisotropic Stars

9
Solution is singular unless anisotropy vanishes at the centre!



The anisotropic mechanism must make the pressure isotropic at the center.

Anisotropic Stars
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The anisotropic mechanism must make the pressure isotropic at the center.

Bowers & Liang  postulated an “ad-hoc” EOS.

Other works have postulated similar EoS. However, all have some problems!

Problem 1) Formulated for static and spherically symmetric distribution of matter 
only. Generalization not trivial.

Problem 2) New EoS is postulated and unrelated to any physical mechanism 
responsible for anisotropies.

Problem 3) Violates the principle of equivalence in its weak form.

Anisotropic Stars

11
[Raposo+,2018]



Main highlights:
1. Extremely compact configurations! More 

compact and massive than isotropic fluid 
stars! Always approach Schwarzschild 
compactness.

2. Can exist in a wide range of mass!
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Main highlights:
1. Extremely compact configurations! More 

compact and massive than isotropic fluid 
stars! Always approach Schwarzschild 
compactness.

2. Can exist in a wide range of mass!
3. The properties depend mildly on the 

anisotropy scale, but strongly on the 
compactness!

4. In the BH limit, the energy density and 
pressure tend to flat values within the star 
while the tangential pressure peaks close 
to the radius.

5. Dominant energy condition can break 
close to the radius

Anisotropic Stars

12



Covariant Formalism allows to do NR 1+1 evolutions.

Studies of non-linear stability of the star.

Anisotropic Stars

13



Problem 1) Formulated for static and spherically symmetric distribution of matter 
only. Generalization not trivial.

Problem 2) New EoS is postulated and unrelated to any physical mechanism 
responsible for anisotropies.

Problem 3) Violates the principle of equivalence in its weak form.

Our EoS does not seem to be the way to solve 1 and 2. However…

Anisotropic Stars
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Problem 1) Formulated for static and spherically symmetric distribution of matter 
only. Generalization not trivial.

Problem 2) New EoS is postulated and unrelated to any physical mechanism 
responsible for anisotropies.

Problem 3) Violates the principle of equivalence in its weak form.

Our EoS does not seem to be the way to solve 1 and 2. However…

Anisotropic Stars

14
Same idea: Start from a Lagrangian formalism!



Relativistic Elasticity
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A classical rigid body:

Object for which the distances between points 
are constant at any given instance in time 
remains constant.
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Relativistic Elasticity

15

Therefore: There are no rigid bodies in relativity!

Physically it takes some time for one end of a finite-size body to receive 
information about forces acting on the other end. 

A classical rigid body:

Object for which the distances between points 
are constant at any given instance in time 
remains constant.



Relativistic Elasticity
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Ehrenfest’s paradox:

No undeformable bodies in relativity!



Relativistic Elasticity
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A bit of theory: (Mostly people in Mathematical Relativity community)
[Carter & Quintana, 1972 ; Beig & Schmid, 2003; Karlovini & Samuelsson, 2003]



Relativistic Elasticity
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A bit of theory: (Mostly people in Mathematical Relativity community)
[Carter & Quintana, 1972 ; Beig & Schmid, 2003; Karlovini & Samuelsson, 2003]

3 key ingredients:

1. Physical spacetime

• Where your deformed object lives.

2. Reference spacetime

• 3-Riemannian manifold  - “undeformed body”.

3. Projection map: 

• The level sets of the projection map are the worldlines of the medium particles.



Relativistic Elasticity

18

The projection map:

We can make it more concrete by assigning some local coordinates.

Another way of thinking: The mapping defines a set of 3 scalar fields that 
depend on the spacetime coordinates.
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spacetime metric on the 3-Riemannian manifold.



Relativistic Elasticity
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The projection map:

We can make it more concrete by assigning some local coordinates.

Another way of thinking: The mapping defines a set of 3 scalar fields that 
depend on the spacetime coordinates.

Once coordinates are assigned, we can construct the projection of the 
spacetime metric on the 3-Riemannian manifold.

This gives you a definition of strain!



Relativistic Elasticity
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The reference state:

Preferred undeformed state Deformed object

In a 2 +1 Minkowsky spacetimeLet’s think about 2D

The objected has stretches and deforms due to its natural preferred state.
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Our set of equations (from GR):

We choose a Lagrangian density of the type.
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Relativistic Elasticity
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Our set of equations (from GR):

We choose a Lagrangian density of the type.

We can compute the stress-energy tensor:

It is straightforward to see that the Lagrangian is the energy density.

The choice of                                 corresponds to the choice of an elastic law! 



Relativistic Elasticity
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Once we have the Lagrangian we can obtain the stress-energy tensor.
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Cauchy stress tensor (orthogonal to the worldlines)

Once we have the Lagrangian we can obtain the stress-energy tensor.

Important to note: Elastic laws can be very general.

We can make additional simplifications.

1. Homogeneous materials: The Lagrangian (EoS) does not depend on the positions.



Relativistic Elasticity
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Cauchy stress tensor (orthogonal to the worldlines)

Once we have the Lagrangian we can obtain the stress-energy tensor.

Important to note: Elastic laws can be very general.

We can make additional simplifications.

1. Homogeneous materials: The Lagrangian (EoS) does not depend on the positions.

2. Isotropic materials: The Lagrangian (EoS) depends only on the deformation           through its eigenvalues, 
specifically the principal invariants.
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Physical meaning:

Eigenvalues of            tell you how much the principal directions of your material stretch when they are deformed.
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Relativistic Elasticity
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Physical meaning:

Eigenvalues of            tell you how much the principal directions of your material stretch when they are deformed.

Equivalently: Linear densities along the principal directions. 

Under these assumptions we get:

The stress-energy tensor is diagonal, and we can identify the pressures as:

The relativistic elasticity theory tells you how to compute the pressures from the EOS. 
No need for additional ad-hoc EoS.

Recall the fluid case!



Relativistic Elasticity
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The formalism algo gives you expression for the speeds of sound!

Two types of waves:

• Longitudinal waves

• Transverse waves:

For anisotropic stars there was no formalism to compute these sound speeds! Affects causality studies!



Einstein’s Elastic Equations
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Turns out that the stress-energy tensor is exactly the same as the anisotropic fluid.

Same system of anisotropic TOV equations.

Same as perfect-fluid Modified pressure equation
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“principal linear densities”
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24

Turns out that the stress-energy tensor is exactly the same as the anisotropic fluid.

Same system of anisotropic TOV equations.

Same as perfect-fluid Modified pressure equation

Introduce our EoS: Introduce the pressures:
“Number density of particles”

“Average number density of 
particles”



Einstein’s Elastic Equations

24

Turns out that the stress-energy tensor is exactly the same as the anisotropic fluid.

Same system of anisotropic TOV equations.

Same as perfect-fluid Modified pressure equation

Introduce our EoS: Introduce the pressures:

Everything depends on     ! The system is now closed!

“Number density of particles”

“Average number density of 
particles”
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Quadratic EoS
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With the formalism set, the question reduces to prescribe an EoS for elastic matter.

Start with the simplest case: A polytropic with a quadratic elastic correction!

Yesterday’s lesson: Fluid polytrope EoS.

Our elastic EOS: Fluid polytrope EoS + quadratic elastic correction.

Note: 
These new variables make the system invariant with respect to the reference state.



Quadratic EoS - Results
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Quadratic EoS - Results

16

In spherical symmetry there are only 5 independent sound speeds!

Actually, we need to specify the form of one the sound speeds using a “natural choice”.

27



Affine constant sound speed EoS
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From last lecture:

Constant sound speed EOS (affine):
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constant. We set constant longitudinal wave speed!
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From last lecture:

Constant sound speed EOS (affine):

Using the expressions for the velocity we can find an expression for the density that 
gives constant sound speeds.

However: We don’t have freedom to set all speeds 
constant. We set constant longitudinal wave speed!

Our elastic affine constant sound speed EoS:



Affine constant sound speed EoS

29

Realistic physical conditions on the matter restrict the parameter space.

Imaginary sound speeds (transverse waves) in 
undeformed state

Imaginary sound speeds 
(transverse waves), negative 
densities and pressures for 

large densities.

Imaginary sound speeds 
(transverse waves), DEC

Breaks elastic conditions in the undeformed state



Affine constant sound speed EoS

30



Maximum Compactness of Stars

Black Hole:

Buchdahl Bound:

Causal Buchdahl Bound:

Causal Buchdahl bound + Radial Stability:

31[Urbano & Vermaee, 1810.07137]

With constant sound speed EoS we can look for bounds on 
viable stars!



Maximum Compactness of Stars

Black Hole:

Buchdahl Bound:

Causal Buchdahl Bound (fluid):

Maximum Compactness for Physically Admissible stars (elastic):

Causal (stable) Buchdahl bound (fluid):

Bound (stable) for Phys. Admissible stars (elastic):

32

With constant sound speed EoS we can look for bounds on viable stars!

Causal & 
Physically 

Admissible

Superluminal wave propagation

Causal & Physically Admissible 
& Radially Stable
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Last lectures in a nutshell

32

Part I:

Compact objects in our Universe: Black Holes, Neutron Stars 
and White Dwarfs.

Fluid models for compact objects: TOV equations.

Equation of state: 
• Constant density; 

• Polytropes; 

• Constant sound speed;

Buchdahl limit and Causal Buchdahl limit;



Last lectures in a nutshell

32

Part II:

Compact objects and Exotic Compact Objects;
 
 Why we care about Exotic Compact Objects;

How to construct different models of ECOs:
 
 “Artificial” models (wormholes, gravastars, etc…)
 
 Anisotropic stars & Elastic Stars



Last lectures in a nutshell

32

Part II:

Anisotropic Stars:
• Constructed by solving a system of anisotropic TOV equations.

• Problems: Additional ad-hoc EoS; Spherically symmetry;

Elastic Stars:
• Similar idea but start from Lagrangian approach.

• Leads to the same system of anisotropic TOV equations.

• Relasticity tells you how to obtain the pressures from the EoS.  No need for additional ad-hoc EOS.

• Does not require necessarily spherically symmetry and is covariant naturally.

Key features:
 

Allows to construct ultracompact physically viable objects.



How to do it in practice

32



Phenomenology

Post-Merger:

• Quasinormal Modes;

• Gravitational Echoes;

Inspiral Phase:

• Multipole Moments;

• Tidal heating;

• Tidal deformations;



Post 
Merger

Time-
dependent

Perturbation

Final Stationary 
Spacetime

Post-Merger 
Spacetime 

= +

Perturbation is governed by:

Where:

[Regge, Wheeler, 1957 & Zerilli, 1970]



Post 
Merger

Time independent version:

Applying appropriate 

boundary conditions at the 

surface/horizon and at 

infinity leads to an 

eigenvalue problem for the 

frequency.



QNMs
of a BH

Properties of the BH QNMs:

• Isospectrality.

• Imaginary part becomes 
increasingly larger with n. 

• High overtones have quick 
damping time.



QNMs
of an ECO

Properties of the ECO QNMs:

• Breaking of isospectrality;
[Chandrasekar, Detweiler, 75]

• In the BH limit the ECO QNMs are 
low-frequency and long-lived.

[Maggio, Pani, Raposo, 2021]



Time-Dependent

[Maggio, Pani, Raposo, 2021]

BH case:

• Perturbation interacts with 
potential maximum (close to 
photonsphere).

• Perturbation splits into two 
contributions.
• Reflected to infinity.
• Transmitted towards horizon.



Time-dependent



?

Time-dependent

BH case:

• Ingoing wave – 
absorbed at horizon.

ECO case:



Time-dependent

BH case:

• Ingoing wave – 
absorbed at horizon.

ECO case:
• Mix of ingoing and 

outgoing wave.
• Waves are reflected 

between the potential 
wall at surface and at 
potential maximum.



Time-dependent



Echoes

Prompt Ringdown:

• Same signal, BH and ECO. Why? • Where do you observe the QNMs in this 
case?



Echoes

Prompt Ringdown:

• The ringdown has no 
information on the 
boundary/surface.

• The information on the 
surface appears at later times.



Echoes
Ultracompact

Stars

The potential barrier is not at surface but within the 
compact object (centrifugal barrier);

Perturbation takes more time traveling within the 
star than outside. Much longer time between  
echoes.



Echoes
Ultracompact

Stars



Multipole Moments
And 

Tidal Effects



Multipole 
Moments

In Newtonian Gravity: In GR:
More complex definition, but similar idea (in 
ACMC coordinates)



Multipole 
Moments

In Newtonian Gravity:

… but ECOs canBlack Holes have no hair…

Axisymmetric & Equatorially Symmetric

In GR:
More complex definition, but similar idea (in 
ACMC coordinates)



Multipolar boson starsMicrostate geometries

[Herdeiro+,2008.10608]

[Raposo+, 2007.01743; Bena, Mayerson, 2006.10750]

Fundamental state of 
Proca star is Prolate!

Nonspherical ECOs?Multipole 
Moments

[Herdeiro+,2311.14800]

Multi-center solutions 
motivated by string-theory

Prolate Proca stars

In Newtonian Gravity:

… but ECOs canBlack Holes have no hair…

Axisymmetric & Equatorially Symmetric

In GR:
More complex definition, but similar idea (in 
ACMC coordinates)

[Etevaldo’s talk]



Soft ECOs

The multipolar deviations vanish logarithmically (or faster)

Soft ECO condition:
 Curvature at surface like that of horizon.



Microstate geometries

[Raposo+, 2007.01743; Bena, Mayerson, 2006.10750]

Fuzzballs

Multi-center solutions motivated by string-
theory

Multipolar Structure of Fuzzball

Where U is a combination of:

Since this are harmonic functions, metric is in 
ACMC form:



Multipole
Moments

A detection of EMRI can potentially allow to constrain M2 up to one part in 104

For LISA: EMRI are a gold signal for multipolar tests. Can constrain a large 
set of multipoles! 

The multipole moments affect the phase of the gravitational wave (inspiral).

The dominant term appears at 2PN order.

However: Correlated with the spins (not measured accurately so far).

[Kastha+, 1905.07277]



Tidal Love 
numbers

For BHs:



Tidal Love 
numbers

For BHs:

For NSs:



Tidal Love 
numbers

For BHs:

For NSs:

For ECOs:



Tidal Love 
numbers:

ECOs

For Hard ECOs

• Tidal Love number vanishes 
logarithmically in the BH limit.

• The Love number can 
be converted into a 
distance of ECO surface 
from horizon!

• Possible to probe Planckian 
corrections to the horizon!



Tidal Love 
numbers:

ECOs

For Ultracompact Stars:

• Tidal Love number vanishes 
polynomially in the BH limit.

• For star-like ECOs it may be 
challenging to measure Planckian 
corrections to the horizon 
structure.



Love 
numbers in 

the 
waveform

Tidal effects add linearly to the 
waveform phase.

Newtonian 1PN etc

5PN contribution! 

Average tidal deformability



Detectability

[Maselli+, 2018]
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